Château de Caen

Influence of the turbulent wake downstream offshore wind turbines on larval dispersal

Influence of the turbulent wake downstream offshore wind turbines on larval dispersal

Refs : Adams T. P., Miller R. G., Aleynik D., & Burrows M. T., 2014. Offshore marine renewable energy devices as stepping stones across biogeographical boundaries. Journal of Applied Ecology, 51(2), 330-338. Alari V., & Raudsepp U., 2012. Simulation of wave damping near coast due to offshore wind farms. Journal of Coastal Research, 28(1), 143-148. Bergström L., Kautsky L., Malm T., Rosenberg R., Wahlberg M., Capetillo N. Å., & Wilhelmsson D., 2014. Effects of offshore wind farms on marine wildlife—a generalized impact assessment. Environmental Research Letters, 9(3), 034012. Christensen E. D., Johnson M., Sørensen O. R., Hasager C. B., Badger M., & Larsen S. E., 2013. Transmission of wave energy through an offshore wind turbine farm. Coastal engineering, 82, 25-46. Clark S., Schroeder F., & Baschek B., 2014. The Influence of Large Offshore Wind Farms on the North Sea and Baltic Sea: A Comprehensive Literature Review. Geesthacht, Germany: Helmholtz-Zentrum Geesthacht, Zentrum für Material-und Küstenforschung. Dannheim J., Bergström L., Birchenough S. N. R., Brzana R., Boon A.R., Coolen J.W.P., Dauvin J.C., De Mesel I., Derweduwen J., Gill A. B., and others, 2020. Benthic effects of offshore renewables: Identification of knowledge gaps and urgently needed research. ICES Journal of Marine Science, 77(3), 1092–1108, https://doi.org/10.1093/icesjms/fsz018. Davidson F. J., & Deyoung B., 1995. Modelling advection of cod eggs and larvae on the Newfoundland Shelf. Fisheries Oceanography, 4(1), 33-51. Floeter J., van Beusekom J. E., Auch D., Callies U., Carpenter J., Dudeck T., ... & Möllmann C., 2017. Pelagic effects of offshore wind farm foundations in the stratified North Sea. Progress in Oceanography, 156, 154-173. Greenshields C., 2016, OpenFoam User Guide, Version 7; OpenFOAM Foundation, https://cfd.direct/openfoam/user-guide-v7/ Kanaris N., Grigoriadis D., & Kassinos S., 2011. Three dimensional flow around a circular cylinder confined in a plane channel. Physics of Fluids, 23(6), 064106. Kawamura T., Hiwada M., Hibino T., Mabuchi I., & Kumada M., 1984. Flow around a finite circular cylinder on a flat plate: Cylinder height greater than turbulent boundary layer thickness. Bulletin of JSME, 27(232), 2142-2151. Lavanya C., & Kumar N. D., 2020. Foundation Types for Land and Offshore Sustainable Wind Energy Turbine Towers. In E3S Web of Conferences (Vol. 184, p. 01094). EDP Sciences. Lett C., Verley P., Mullon C., Parada C., Brochier T., Penven P., & Blanke B., 2008. A Lagrangian tool for modelling ichthyoplankton dynamics. Environmental Modelling & Software, 23(9), 1210-1214. Menter F. R., 1994. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA journal, 32(8), 1598-1605. Petersen T. U., Sumer B. M., Fredsøe J., Raaijmakers T. C., & Schouten J. J., 2015. Edge scour at scour protections around piles in the marine environment—Laboratory and field investigation. Coastal Engineering, 106, 42-72. Pezy J. P., Dauvin J. C., 2021. Wide coverage but few quantitative data: Coarse sediments in the English Channel. Ecological Indicators, 121: 107010, https://doi.org/10.1016/j.ecolind.2020.107010. Rivier A., Bennis A. C., Pinon G., and others, 2019. Parameterization of wind turbine impacts on hydrodynamics and sediment transport. Ocean Dynamics, 66, 1285–1299, https://doi.org/10.1007/s10236-016-0983-6 Rogan C., Miles J., Simmonds D., & Iglesias G., 2016. The turbulent wake of a monopile foundation. Renewable Energy, 93, 180-187. Sánchez S., López-Gutiérrez J. S., Negro V., & Esteban M. D., 2019. Foundations in offshore wind farms: Evolution, characteristics and range of use. Analysis of main dimensional parameters in monopile foundations. Journal of Marine Science and Engineering, 7(12), 441. Sarpkaya T., 1976. Vortex shedding and resistance in harmonic flow about smooth and rough circular cylinders at high Reynolds numbers. Naval Postgraduate School Monterey CA. Van Berkel J., Burchard H., Christensen A., Mortensen L. O., Petersen O. S., & Thomsen F., 2020. The effects of offshore wind farms on hydrodynamics and implications for fishes. Oceanography, 33(4), 108-117

Résumé

Notre étude se concentre sur les impacts des fondations d’éoliennes (monopile et
gravitaire) sur la dispersion larvaire des espèces bentho-pélagiques colonisant ou trouvant
refuge au niveau des substrat durs de telles structures artificielles. Une modélisation
numérique couplée est utilisée dans cette étude. Elle combine un modèle Eulérien
(OpenFoam), résolvant les équations 3D de Navier-Stokes pour calculer l’hydrodynamique, et
un modèle Lagrangien (Ichthyop), résolvant une équation d’advection prenant en compte les
processus de dispersion horizontale et verticale. Deux phénomènes résultant de l’interaction
pieux-courant sont mis en évidence: les effets de sillage turbulent et l’apparition de tourbillons
en fer à cheval près du fond. Ces différents phénomènes sont analysés dans une configuration
2D à l’échelle locale pour une fondation puis pour un réseau de fondations afin de
comprendre leurs influences sur la dispersion des larves. Après des tests de sensibilité, le
modèle de turbulence de type RANS (Reynolds Averaged Navier-Stokes) k-omega SST est
choisi pour reproduire les tourbillons en fer à cheval et le sillage turbulent avec un temps de
calcul moindre. Ensuite, pour ces mêmes fondations monopile et gravitaire, des simulations
de dispersion larvaire pour un type spécifique de larves, transportées passivement et sans
comportement vertical, sont effectuées. Les résultats montrent une période de rétention près
des fondations et une circulation des larves qui suit le sillage turbulent.

MOTS CLEFS : Mécanique des fluides environmentale, energies marines renouvelables , dispersion
larvaire, couplage Eulerien-Lagragien.

Abstract

Our study was focused on the impacts of wind turbine foundations (monopile
and gravity base) on larval dispersal from bentho-pelagic species colonizing and living on the
hard substratum of such artificial structures. On the basis, numerical modelling is used that
combines the Eulerian model (OpenFoam), solving the 3D Navier-Stokes equations to
compute the hydrodynamics, and the Lagrangian model (Ichthyop), solving an advection
equation considers horizontal and vertical dispersion processes. Two phenomena resulting of
the piles-current interaction are highlighted: the turbulent wake and the appearance of
horseshoe vortices near the bottom and around the structure. The different phenomena are
analysed in a 2D configuration at the local scale with one and several foundations to
understand their influences on the dispersion of the larvae. This helps to evaluate the
influence of the turbulence/fondation interactions and to choose The RANS (Reynolds
Averaged Navier-Stokes) k-omega SST turbulence model to reproduce the horseshoe vortices
and turbulent wake with less computing time. Then, with the same monopile and gravity base
foundations larval dispersal simulations for one specific type of larvae with passif transport
and without vertical behavior are performed. The results show a retention phase near the
foundations and circulation of the larvae that follow the turbulent wake.

KEYWORDS: Environmental fluid mechanics, marine renewable energy, larval dispersal, Eulerian-Lagragian coupling.

Télécharger l'article

Pour recevoir l'article au format PDF, veuillez remplir le formulaire ci-dessous.

« * » indique les champs nécessaires

Ce champ n’est utilisé qu’à des fins de validation et devrait rester inchangé.